Programming by Demonstration Using Two-Step Optimization for Industrial Robot

Mikhail Ostanin, Dmitry Popov, Alexandr Klimchik

Innopolis University <u>{m.ostanin, d.popov, a.klimchik}@innopolis.ru</u>

Motivation

- While teaching/demonstrating people make movements that are optimal for them, but these movements will not be optimal for a robot with another kinematic structure.
- Each demonstration is slightly differs from previous.

Sources: doi:10.4172/advances-robotics-automation.1000110

INIOPOLIS UNIVERSILY

Dmitry Popov

Programming by Demonstration Using Two-Step Optimization for Industrial Robot

- Develop a system for Programming by Demonstration based on the teleoperation.
- Use a statistical data analysis and optimization techniques to program a robot based on multiple human movements.
- Minimization of the total execution time or the energy consumption.

System Setup

Hardware:

- Kinect 2.0
- Desktop computer
- Robot Controller
- KUKA IIWA LBR 14

Software blocks:

- Kinect SDK
- Data processing
- Trajectory Statistics Analysis
- Trajectory Optimization

Teleoperation

Manipulator – 7 DOF Human hand – 6 DOF

The coordinates of the human wrist (x_w, y_w, z_w) are corresponding to the coordinates of the manipulator EE. The orientation of the EE (θ, φ, ψ) could be found as a vector directed from the elbow (x_e, y_e, z_e) to the wrist.

KUKA IIWA and human tracking markers with calibration points

invopolis university

Dmitry Popov

Programming by Demonstration Using Two-Step Optimization for Industrial Robot

Trajectory statistical analysis

Algorithm:

- 1) User shows Start and End points.
- User repeat action several times.
- 3) Normalization of the obtained trajectories.
- 4) Computation of a midpoint and standard deviations for each discrete part.

The result of statistical analysis for four times repeated trajectory (Front view).

Dmitry Popov

Joint space optimization

Create additional points

 Additional points that are evenly spaced around the midpoint.
Additional points that are distant from the center by the logarithmic law.

INNOPOLIS UNIVERSILY

Dmitry Popov

Programming by Demonstration Using Two-Step Optimization for Industrial Robot

Graph structure

Create the graph

Redundancy – a large number of configuration.

Black arrow – accepted transformation, Red arrow – rejected transformation.

invopolis university

Dmitry Popov

Joint space optimization

Calculate weights

Weighting functions:

- 1) Execution time
- 2) Energy consumption

$$W = \sum_{t} \sum_{i=1}^{7} \tau_{i} \cdot \Delta q_{i},$$

3) EE displacement in the

Cartesian space

Methodology problem:

Example of the trajectory with intersecting graph points (2D case)

INIOPOLIS UNIVERSILY

Dmitry Popov

Programming by Demonstration Using Two-Step Optimization for Industrial Robot

RESULTS

Trajectory for different cases. Front view.

Trajectories.

INIOPOLIS UNIVERSILY

Dmitry Popov

Programming by Demonstration Using Two-Step Optimization for Industrial Robot

Trajectories evaluation

Criteria	Σ Δq, rad	Max (Δ q), rad	T, sec	Energy, J	
Average trajectory	9.64	2.01	5.03	40.14	
Shortest path in the Cartesian space	9.05	1.94	4.72	35.47	
Total Execution time	9.01	1.77	4.25	39.2	
Energy consumption	8.77	1.86	4.49	33.9	

The time optimal trajectory is 15.5% lower than the average trajectory. Energy optimal case shows 15% improvement.

INIOPOLIS UNIVERSILY

Dmitry Popov

RESULTS

	Initial		Higher points density		Lower points density		½ deviation		Log distribution	
Criteria	Time	Energy	Time	Energy	Time	Energy	Time	Energy	Time	Energy
Energy, J	39.2	33.9	42.26	34.28	46.95	38.56	42.03	37.77	37.95	34.16
T, sec	4.25	4.49	4.42	4.51	4.91	4.90	4.70	4.76	4.23	4.87
Max (Δ q), rad	1.77	1.86	1.80	1.89	1.90	1.97	1.97	1.99	1.85	1.97
Σ Δq, rad	9.01	8.77	9.26	8.82	9.99	9.49	9.69	9.35	8.85	9.12

• Increasing or lowering point density does not improve time or energy criteria.

- For a half of deviation trajectories, total execution time increased by 10.6%. The energy value was higher on 11.4%.
- The results with uniform point distribution are slightly better than with logarithmic distribution.

invopolis university

Dmitry Popov

- The detection accuracy depends on the tracking system precision.
- In statistical analysis deviation is applied to all directions around the trajectory.
- The optimized trajectories are significantly better than the initial average trajectory.
- The logarithmic distribution law does not improve the performance.
- Collision avoidance, just exclude graph nodes.

invopolis university

- Kinect based teleoperation for the different robot systems with redundancy and without.
- Trajectories could be optimized by the twostage algorithm.
- Optimization is performed using discrete methods, with minimization of time or energy criteria.

Future Works

- Developing trajectory optimization with another criterion and multifunction optimization.
- Design a more accurate teleoperation system by using the multi-Kinect system.
- This work will be integrated to interactive robot programming system based on Mixed Reality.

